

Identifying Design Principles for CS Teacher Ebooks
through Design-Based Research

Barbara Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, Mark Guzdial
Georgia Institute of Technology College of Computing

801 Atlantic Drive
Atlanta, GA 30332

ericson@cc.gatech.edu

ABSTRACT
Several countries are trying to provide access to computing
education for all secondary students. However, there are not
enough teachers who are prepared to teach computer science.
Interactive electronic books (ebooks) are a promising approach for
providing low-cost professional development in computer science.
Over the last four years, our research group has been conducting
design-based research by iteratively developing and testing
versions of a teacher ebook to help secondary teachers with no
programming experience learn to teach an introductory
programming course. The interactive elements in the ebook were
designed based on research results from educational psychology
and are intended to make learning more efficient and effective.
Our goals for this effort are to increase teachers’ knowledge of
computer science concepts and to improve teachers’ confidence in
their ability to teach computer science. In this paper we
summarize our previous work and report on a large-scale study of
version two of the teacher ebook. We also recommend several
design principles for interactive ebooks for computing teachers
based on feedback from teachers, log file analyses, and
randomized controlled studies.

Categories and Subject Descriptors
Social and professional topics ~ Computing education

General Terms
Measurement; Design; Experimentation

Keywords
high school teacher professional development; ebooks; electronic
books; design-based research

1. GOAL: MORE CS TEACHERS
The United States president, Barack Obama, announced a new
initiative in January, 2016, Computer Science for All [33].
President Obama declared that computer science “is a new basic
skill.” In his 2016 State of the Union address, he said that we
should offer every student computer science classes. There are
similar initiatives in the United Kingdom [8; 9], New Zealand [4;
5] Denmark [10], and other countries around the globe.

The challenge in all of these efforts is to find enough teachers to
staff computer science classrooms. Since computer science is not

currently considered a core subject in most states in the US, we do
not have accurate national records about the availability of
introductory computer science courses. We do know that fewer
than 10% of high schools in the United States offer the Advanced
Placement Computer Science A course, which is equivalent to a
college level CS1 course [13]. In New York City, the largest
school system in the United States, less than 10% of the high
schools have any computer science teacher at all [39].

An effective computer science high school teacher has content
knowledge about computer science as well as pedagogical content
knowledge (PCK) about how to teach computer science [30]. Our
goal for professional development is to increase teacher self-
confidence, in addition to increasing content knowledge and PCK.
Ni found that teacher self-confidence is a critical factor in getting
teachers to pursue further learning in computer science [28]. We
know that CS teacher self-confidence about teaching depends
greatly on their confidence that they can do the programming
needed in their course [30].

In the United States, a new Advanced Placement course and exam
is in development, CS Principles. A goal for this course (AP CSP)
is to broaden participation in computing [1]. In support of that
project, we provide free on-line professional development to
teachers learning the programming part of CSP. We chose
programming because we knew that it was critical for developing
teacher self-confidence. We chose to build an electronic book
(ebook) to provide that professional development freely at scale.

The most important outcome of our project is the design
principles that can inform future ebooks for CS teacher
professional development. To develop the design principles, we
adopted a design-based research (DBR) approach. We started
with hypotheses based on learning theories, developed the book
based on those hypotheses, tested the ebook with real teachers,
analyzed the data from the tests, then modified our hypotheses.
We used our modified hypotheses to inform re-development of
the book, and iterated the cycle. In parallel, we conducted
laboratory experiments to test our hypotheses using randomized
controlled studies.

In this paper, we describe our process and the design principles
that we have generated from our iterations and experiments. We
present our arguments for our ebook approach and describe how
the features of our ebook are informed by theory about learning
and teacher professional development. This paper summarizes the
results from our prior studies and presents the new results from a
large-scale study of version 2 of the teacher ebook, which was
conducted during the spring and summer of 2015.

2. METHODS
We use a design-based research methodology to frame our work.
Design-based research is an iterative approach to educational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICER '16, September 08-12, 2016, Melbourne, VIC, Australia
© 2016 ACM. ISBN 978-1-4503-4449-4/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2960310.2960335

191

research that grew out of the work of Ann Brown, an educational
psychologist, and Alan Collins, a learning scientist [7]. The goal
of design-based research is to both improve practice and generate
or advance theories that transcend the particular context [3]. We
are drawing on theories from educational psychology and trying
to advance those theories by testing them in actual learning
environments. However, we also conduct randomized controlled
experiments to validate the hypotheses we generate.

2.1 Why Ebooks
The general problem we are addressing is how to provide
professional development opportunities to working (in-service)
secondary school teachers to prepare them to teach CS. We started
our work by asking two questions: (1) what do expert computer
science high school teachers do and (2) how do we teach CS
within the time limitations of a working teacher.

In our studies of expert CS teachers [15; 28], we realized that the
tasks and skills of a high school CS teacher are unlike those of a
professional software developer. We found that CS teachers rarely
write code. They often help students debug code, and they teach
students how to evaluate their own and peer’s code [19]. Expert
teachers know what students get wrong, how to diagnose those
misconceptions, and what activities help students develop a better
understanding [32], i.e., pedagogical content knowledge (PCK)
[21].

In an interview study of working professionals taking post-
graduate CS classes on-line, we found that many learners did not
succeed, and for reasons that had little to do with the course itself
[6]. We found that learners dropped out of the course because of
events in their lives outside of the class, which made it impossible
for them to keep up with the pace of the course. The pedagogy of
typical CS classes, with a focus on apprenticeship via
programming activities, led to unpredictably long work sessions
dealing with mundane issues (e.g., “hours because one comma
was out of place”). The working professionals from that study are
similar to the working teachers we are studying.

Another scalable way to deliver low-cost professional
development to teachers is through Massive Open Online Courses
(MOOCs). However, MOOCs have had low completion rates,
which is problematic when the goal is to prepare teachers to teach
a complete curriculum [36]. Effective teacher professional
development requires at least 50 hours of effort by a teacher [11].
We need on-line classes that support that much time investment in
a structure and pace that allows teachers to fit the learning into
their busy lives.
We decided to focus on ebooks as a medium because they can be
self-paced. They can also be designed to provide low cognitive-
load activities, which are easy to schedule in a busy life (e.g., few
confounding syntax errors). We can also provide content to meet
the unique needs of teachers, such as pedagogical content
knowledge (PCK). Another difference between our ebooks and
MOOCs is that our ebooks feature active learning using an
Examples+Practice approach, which is explained in the next
section. Much of the content in MOOCs is delivered via video
lectures. A meta-analysis of 225 studies found that active
learning lead to better student performance than lecture in STEM
fields [17]. Active learning also had a larger effect on female
students in male-dominated fields and on disadvantaged students.

2.2 Ebook Features and Educational
Psychology Principles
We have presented the design of our ebook in other papers [14;
16], so we present the features at a higher-level here, with a focus
on how they relate to the design principles later. The general
structure of our ebooks is Examples+Practice. We use worked
examples to teach computer science and problem solving [38],
and we interleave one or two practice activities per worked
example as recommended by Trafton & Reiser [40] to focus
attention on the worked examples.
Our goal with the Examples+Practice format is to offer efficient
and effective instruction that leads to learning across many small
chunks of time. We expect the Examples+Practices sets to have
lower cognitive load than traditional code writing activities, and
that this lower cognitive load will lead to more learning with less
time and effort [37]. A frustrating syntax error that takes hours to
fix (as we know happens [6; 22]) is inefficient – there is too little
learning from a large investment of time. Our hypothesis is that
our ebooks will lead to high completion rates with small learning
sessions (20 minutes to one hour), which will increase teachers’
content knowledge and confidence.
Worked Examples: Most of our examples are in the form of
active code segments, which are editable, executable code
segments. Learners1 are encouraged to edit these code segments,
e.g., to answer a question in a practice problem. Our active code
examples include audio tours that describe the program using
audio narration. Audio tours build on the dual modality principle,
that moving explanation from visual text to auditory narration can
reduce cognitive load and improve learning [25; 29]. Some of our
examples are in the form of a code lens, which is an executable
code segment that uses Guo’s visualization tool [18].

Practice: We have four forms of practice. Two are fairly typical:
multiple-choice and fill-in-the-blank questions. The multiple-
choice and fill-in-the-blank questions both offer immediate
feedback tailored to the response, i.e., the learner is told more than
just “right” and “wrong.”

A third form of practice is a Parsons problem where learners are
given a problem to solve and given a correct program to solve it,
but the lines of the program are spread across “refrigerator
magnets” which have to be dragged into the right order with the
right indentation [12; 16; 20; 31]. Prior research on Parsons
problems has shown a notable correlation between scores on
Parsons problems and scores on code writing problems [12].
Also, the lowest quartile of students did better on Parsons
problems than on code writing or code tracing problem [12],
which may mean that solving Parsons problems is easier than
writing code. Parsons problems provide feedback by highlighting
blocks that are in the wrong place or have the incorrect
indentation.

The fourth form of practice is editing active code segments. The
feedback from this type of practice is Python error messages or
the output from execution of the code.

Teacher Notes: The teacher ebook also includes pedagogical
content knowledge (PCK) notes to help teachers diagnose
student’s misunderstandings and learn how to teach the

1 In the ebooks described in this paper, our users are teachers, but

in the role of students. We use the generic “learners” when
speaking of the teachers learning through our ebook.

192

programming concepts. For example, one teacher note is a video
that explains the student misconception that assigning one
variable to another creates a relationship between the two
variables, such that any change to one will automatically change
the other.

Videos: Unlike MOOCs there aren’t very many videos in the
teacher ebook. Most of the videos demonstrate student
misconceptions.

3. EBOOK ITERATIONS
All design-based research studies involve iterations of
development, data gathering, and analysis. In this section, we
present summaries from our previous studies and the new results
of a large-scale study with teachers using version 2 of the teacher
ebook. We also report on the changes we made to version 3 based
on the teacher feedback from version 2.

3.1 Early Studies: Teacher Observations
We added interactive content to the ebook “How to Think Like a
Computer Scientist – Interactive Edition” and observed teachers
working through a chapter of that ebook. We found that the
teachers didn’t do all of the interactive activities. For example,
they rarely watched the videos or listened to the audio tours. One
of the teachers mentioned that he had watched some of the videos,
but found that they covered the same content as the ebook, so he
didn’t feel that he needed to watch them. Some of the teachers
hadn’t even noticed the audio tour button and the book text never
mentioned them. This study was described previously [16].

3.2 Early Studies: Log File Analysis of
Student Use
A log file analysis of high school and undergraduate student use
of the “How to Think Like a Computer Scientist – Interactive
Edition” ebook found that most students ran the code, solved
Parsons problems and answered multiple-choice questions. Fewer
students edited the code, watched the videos, or listened to audio
tours. While the teachers that we had observed found the Parsons
problems a bit too easy, some students clearly struggled to solve
them. This study was also described previously [16].

3.3 Early Studies: Usability Study
Another of our early studies concerned the usability of some of
the interactive features of the ebook, which we reported on
previously [14]. We tested the usability of the interactive features,
active code, code lens, Parsons problems, and multiple-choice
questions against those of similar ebooks (Zyante and CS Circles).
Most of the teachers in the study preferred the Runestone user
interface for all but one of the interactive features (the code lens).

3.4 Version 1: Teacher CSP Ebook
 We conducted a pilot study with ten teachers during the spring of
2015 which we reported on in [14]. They worked through the first
eight chapters of the first version of the teacher ebook at their own
pace. These chapters covered variables, math operators, and
assignment. The ebook introduced these concepts in several
contexts: numbers, manipulating strings, making a virtual robot
turtle move and draw, and modifying the colors of images. This
version also contained teacher notes about common
misconceptions and other pedagogical content knowledge.

The study participants were asked to take post-tests after every
two chapters. They were also asked to answer feedback questions
after every two chapters. Most of the teachers reported that they
enjoyed the interactive features of the ebook. One teacher wrote,
“I feel like this would be an effective and beneficial tool for

students and teachers.” However, a few of the teachers didn’t use
the interactive features very much. One of the teachers mostly
answered multiple-choice questions (usually incorrectly) – she
may have been rushing through the ebook to make the deadline in
order to receive compensation for completing the study. Teachers
who used more of the interactive features and spent more time in
the chapters reported higher confidence in their ability to teach the
material. Of the ten participants, five (50%) “completed” the
ebook (took all of the post exams) which is a higher completion
rate than is typical for MOOCs. However, this was only a small
pilot study with only ten teachers, and the compensation likely
influenced completion behavior.

3.5 Version 2: Teacher CSP Ebook
We made modifications based on feedback from the pilot study,
such as adding a video to show how to solve a Parsons problem,
asking the reader to listen to an audio tour, and breaking the
chapters into smaller sections. We completed writing the ebook in
the early spring of 2015. This version of the ebook contained five
parts: computer abilities (chapters 1-2), naming (chapters 3-6),
repeating (chapters 7-11), decisions (chapters 12-15), and data
(chapters 16-19).

We evaluated this new content in several ways.

• We conducted a large scale study of teachers using the
ebook on-line,

• paid a pilot CSP teacher to give us detailed feedback,
and

• had a pilot CSP teacher use the ebook with her high
school students and both the teacher and her students
gave us written feedback.

• We used the ebook in our blended learning (partly on-
line and partly face-to-face) professional development.
We also made the ebook freely available to other groups
offering face-to-face professional development such as
the CS Matters group in Maryland and Project Lead the
Way. Two of the teachers who we interviewed were part
of blended learning cohorts, and that context seemed to
have an influence on their use of the ebook (as seen in
section 3.6.4).

3.6 Large-scale Teacher study of Version 2
We recruited teachers by sending email to our list of over 500
teachers who had attending professional development at Georgia
Tech in the past. Guzdial announced the availability of the teacher
ebook on his blog on April 1, 2015, with a link to more
information about the study.

To qualify for the study, participants had to be at least 18 years
old, hold a Bachelors degree, and could not have taught Python.
Over 200 teachers applied to be part of the study from April to
August 2015. While the majority of the teachers were from the
United States (75%), teachers also applied from the UK, Spain,
Mexico, Australia, England, Scotland, Thailand, Germany,
Greece, New Zealand, Canada, France, Russia, The Netherlands,
Finland, China, Pakistan, Belgium, Brazil, and the Philippines.
To qualify for the study the teachers also had to score less than
70% correct on the pretest (7 or less questions correct out of 11).
The pretest consisted of multiple-choice questions on variables,
assignment, conditionals, functions, lists, strings, loops, and
mathematical operations. These questions were from a thesis by
Juha Sorva that compiled a list of common misconceptions [35].
All multiple-choice questions included the answer “I don’t know”.
Interestingly, several teachers registered for the study multiple

193

times and some of them failed the pretest after passing it the first
time. It appears that the teachers were deliberately failing the
pretest to gain access to the ebook.

Of the 229 teachers who applied for the study, 130 teachers
qualified for the study by scoring less than 70% on the pretest. Of
these only 45 (35%) took the first end-of-chapter test (after
chapter two) and only five people took the test after chapter 17 as
shown in Figure 1.

Figure 1 – The number of people who took each of the
approximately every two chapter post-tests.

The completion rate for those who took the first post-test (45) to
the last post-test (5) is only 11%, which is about the same
completion rate as most MOOCs. However, our actual completion
rate may have been higher since logging was accidentally turned
off during the summer (in late June) when many teachers reported
working through the ebook. Several teachers provided feedback
via an external website for the later chapters, so we do think the
actual completion rate was higher than 11%.

Design-based research recommends mixed methods to evaluate
educational interventions and works closely with educators on the
design and evaluation of educational interventions. One difficulty
we faced was gathering feedback from all of the remote teachers
in the study. We prompted teachers to fill out a feedback survey
approximately every other chapter. The survey asked what
features the teachers found most valuable, what they would
change to make the readings more effective, and whether the
chapter covered the content well. We initially sent email to
teachers who were part of the ebook study to request that they
provide feedback when the log file showed that they had
completed about every other chapter. In late June we added links
to the external feedback surveys directly in the ebook at the end of
about every other chapter. Even though we are missing the log
file data from late June to fall, we do have teacher feedback on
what the teachers found valuable and what should be improved.

3.6.1 Teacher Feedback
Thirty-eight teachers filled out a total of 74 feedback forms during
the study. A count of the number of times each feature was
mentioned as valuable is shown in Figure 2 below.

Figure 2– The number of times each feature was mentioned as

valuable in the feedback
We computed the number of times each feature was mentioned.
Some of the comments mentioned more than one feature. Some

comments were vague such as simply mentioning “practice”
which we interpreted as all the types of practice problems:
multiple-choice, Parsons problems, and fill in the blank.

3.6.1.1 Feedback on the Content
Some teachers commented on the content of the ebook. “I liked
the pace and the quick introduction of turtle and images. Several
teachers give general comments: “So far I love the ebook. It is
well organized, [has] appropriate links, [and is] not too
overwhelming for a new coder.” Another teacher wrote, “I think
the explanations are very clear and easy to understand.”

3.6.1.2 Feedback on the Worked Examples
The active code feature was the feature that was most often
mentioned as valuable (28 times) as shown in Figure 2. One
teacher commented, “The interactive code sections (active code)
were very helpful. I think my students would benefit from using
this format because they are able to see immediately whether their
code works and get feedback.” Teachers also appreciated being
able to edit the code in the active code feature. “I really enjoy
being able to manipulate the code. I do have some programming
experience and it's fun to play with the numbers and watch the
outputs change.” Audio tours were mentioned five times. One
teacher wrote, “The audio tours are a great idea. Students hear
the vocab being used correctly and can repeat it if necessary.”
The code lens, which gave them the ability to step through code
and see the values of the variables change, was also mentioned 5
time with one teacher writing, “Using the code lens tool for
tracing was absolutely fantastic.”
3.6.1.3 Feedback on the Practice Problems
One teacher wrote that the most valuable feature was “The
questions that examine your understanding.” Parsons problems
were mentioned 10 times, while multiple choice and fill in the
blank questions were each mentioned 5 times. Teachers also liked
that some of the practice problems required them to modify the
example code such as changing the “if” statements to “if “and
“else”.
3.6.1.4 Feedback on Teacher-Focused Features
The teacher notes were mentioned 10 times. “It was helpful that
you showed the common misconceptions students have with
variables. That should help me address those directly as I teach.”
Another teacher wrote “I appreciated the note about the rainfall
problem -- anticipating students' struggles and giving us real data
about how student perform on the task.” Several teachers
mentioned the short videos in the ebook as being valuable.
“Videos are great.” Some teachers appreciated the end of chapter
summaries. One teacher wrote, “I like the key terms provided at
the end in the form of a summary review.”

Not all teachers were happy with the ebook. One teacher
commented, “None of it [was valuable]. I already know this
stuff.” While we intended this ebook for teachers with no textual
programming experience, several teachers had much more
experience than we expected of participants in the study.

3.6.1.5 Teacher Suggestions for Changes
Several teachers wanted the ability to write more code in the
ebook and thought that some of the examples would be too
difficult for beginners. “Perhaps have the reader write some very
simple code along with the examples you already have. If this is
for true beginners, some of your examples are going to be total
‘Greek’ to them, even with the explanations. The current examples
may be a bit intimidating.” Some people found errors in the
ebook, “there were a few typos” or in the user interface,
“Sometimes the audio did not work.” Some teachers found the

45
29 22 16 9 9 8 5

0

50

1-2 2-3 3-4 5-6 7-8 9-11 14-15 16-17
Chapters

28	
10	 10	 9	 5	 5	 5	 5	

0
10
20
30

194

order of the first two chapters strange. “The sequence seemed a
little goofy to start with coding [in chapter 1] and then go into
what a computer can do in chapter 2].”
 Some teachers found particular chapters and/or concepts difficult.
One teacher wrote after chapters 7 and 8, “I think at this point I
would like to see MORE examples. This was the first chapter that
I felt in over my head. I would have liked to also see examples of
a FOR loop and a WHILE loop that does the same thing side by
side – so that I could compare the two and see what the
differences are. I would like to see a list of CODES LEARNED
and what they do, and the proper syntax, after each chapter. That
way I would be constantly reviewing both the CODES (Python
commands) and the CONCEPTS (vocabulary).” One teacher
suggested that we, “elaborate [more on the] explanation of
functions.” Another teacher wrote “Chapter 16 [the chapter
introducing data analysis] was very difficult.”
 Teachers also wanted more “more quiz questions” and “more
examples”, and they wanted more answers to the practice
questions to check themselves. “It would be great if we were
given a way to access the answers to different exercises we've
done. That way, when we've finished, we can check our work. Or,
if we have no idea how to start, we can get an idea of how to
begin.” Teachers also asked for hints to help them when they
were stuck, especially for the Parsons problems. “Maybe give
more hints when you get things wrong in a drag and drop or a
program construction task. I got stuck, didn't know what was
wrong - and there was nothing to direct me.”
Teachers also wanted the ebook to cover more of the content of
the CS Principles course. It currently covers only two of the big
ideas from the CS Principles course: programming and data.

3.6.1.6 Teacher Confidence
Since one of our goals was to increase teacher confidence in his or
her ability to teach the content, we were particularly pleased to
find evidence of increased confidence. “I have been told that I
will teach Computer Science next year – and I am completely
overwhelmed and intimidated – but this course is helping to put
my mind at ease.” In a later chapter the same teacher said, “I feel
as if I am slowing adding on to my knowledge of the Python
language. It is helpful to ‘build’ my knowledge.”

3.6.2 Feedback from the Non-Completers
In the fall of 2015 we asked those who hadn’t completed the
ebook why they did not complete it. Seven of the nine (78%)
teachers said that they didn’t have time due to other commitments
or family issues, as expected from Benda’s study [6].

Two of the nine (22%) gave answers based on the content of the
ebook. One teacher wrote, “I found the later lessons/exercises
were less relevant to the sort of teaching I deliver in
programming.” Another teacher listed the reasons as “the user
interface of the book; redundancy of activities; too much jumbled
info on the screen; did not pick up where I left off.” When asked
what most needed to be changed two teachers mentioned some
way to keep track of where you were, “It wasn't at first apparent
which lessons I had completed, although I know that later this
functionality was added.” This functionality was added during the
summer of 2015 in response to this feedback.

Other teachers were concerned about the interface. “I would like
to see it look more like an e-zine. Would give it a more
professional feel.” Another teacher was frustrated by the lack of
help, “Sometimes if I was stuck I didn't know how to complete a
task and there was no help.” Some of the feedback was

contradictory with one teacher asking for more videos and another
suggested that we “lose the videos.”

Teachers reported working on the ebook afterschool, in the
evenings, and in the summer. The amount of time they reported
spending in a session ranged from 20 minutes to 1.5 hours. When
asked what would have encouraged them to finish the ebook most
of them said more time. They also suggested face-to-face
professional development, continuing-education credit, financial
incentives, certificates, and feedback on their performance on the
assessments.

3.6.3 Feedback from the Completers
In the fall of 2015 we also asked those who had completed the
ebook to fill out a survey. We asked how much total time they
spent on working through the ebook, and the answers ranged from
six to 30 hours with most answering around 10-20 hours. As we
mentioned earlier logging was accidently turned off in late June so
we can’t determine the total time spent from the log files. The
reasons for completing the ebook included it being required,
wanting to learn the material, trying to prepare for teaching CSP
in the fall, and “I like to finish things.”
When asked what should be added one teacher wanted
“supporting lesson plans.” This teacher was clearly interested in
the ebook as a resource for students, not for teacher development.
“The ebook is designed so that students can independently work
on activities. There needs to be a way for a teacher to hold
students accountable for completing the ebook. Are there
assignments? Are there quizzes?” Another teacher wrote,
“Enjoyable. Work[ed] at my own pace. Thought provoking and
engaging. I understand CSP and Python better than I did when I
began. I could use this to teach in my class if it was possible.”
Another teacher wanted, “more questions in each section and
more opportunities to write code.” Asked about the overall
experience one teacher reported, “I thought it was a good
experience overall. But I did get very frustrated at certain points
because I was not understanding it.”

3.6.4 Interviews with Teachers
To gather more in-depth feedback from the study participants our
evaluators interviewed three of the teachers from the United
States during the winter of 2016. Each interview was conducted
over the phone, lasted between 50-60 minutes, and was audio
recorded and transcribed.
Teachers’ responses were first sorted into broad coding
categories. The coding categories and themes were guided by a set
of interview questions and also emerged iteratively from the data.
Data analysis proceeded by moving back and forth between
individual cases and the more general view across cases. The
individual cases were then used as examples of the more general
coding categories (similar to the approach used in [30]).

Table 1. Teacher id, experience, motivation, and number of
completed chapters

ID Experience Motivation Completed
A First time teaching CS May teach CSP

in the fall
13 chapters

B Teaching AP CS A for
10 years

Students want
to learn Python
for robotics
competition

3 chapters

C Taught an introductory
computing course using
Scratch

May teach CSP
in the fall

8 chapters

195

Teacher A, had been told to complete a certain number of chapters
before her in-person professional development started “I took a
Computer Science training class this summer. Before the class
started, they asked that we go through this book. They asked us to
get to a certain point in the book. I got actually a little bit past
where they had asked us to go.”
Teacher B was evaluating the ebook as a possible resource. “I
tried to sign up for every single course that I possibly could to get
me familiarized with the material. So, basically, I’ve used [the]
eBook for more of a resource for me. I’m really still in the process
of trying to kind of just figure out what I need for this unit, or
whatever it is I need to do for my courses.”
Teacher C reported that she had signed up for several professional
development opportunities at the same time and stopped working
with the ebook when the workload became too much, “I thought I
could do both… the CSP Mobile [and] CSP Python. So, I was
also in the CSP Mobile Course while I was doing the Python.
Then I stopped taking the Python [eBook] course.”

Interestingly, all three teachers used the eBook at school. They
worked between 30 and 60 minutes at a time. When asked how
they used the ebook, all three of the interviewed teachers
mentioned reading the text, completing the practice items
(multiple choice, fill-in-the-blank, and Parsons problems), and
completing the end of chapter tests. One teacher said that even
though she was asked to edit the code and use the code lens to
step through code, she didn’t do that. “I would do all the
questions just to make sure I understood it. I didn’t really play
around with the code that much, which in retrospect, I think …
would have been better if I did. Like… you could run the code.
Then they said you could change things and play with the code.
But I really didn’t. That was more of a time thing. … I did not use
the code lens that often… I understood what I was doing and I
didn’t need it”.
Teacher B mentioned using the metaphors from the eBook in her
computing class and that the eBook helped her generalize
computing concepts. “I found the different metaphors for a
variable that I can use for teaching for Python or for any other
language. The computer’s contents are taught in such a way that
it’s not just I’m learning Python. I’m also learning computer
concepts and how to teach them and apply them to any
language.” She also said, “I think everything was useful. I really
do. I really like this eBook.”
All three teachers reported that the ebook contributed to their
knowledge of and confidence in teaching CS. Teacher C was
asked how much the ebook contributed to her confidence and she
replied, “Quite a bit really. I mean, I probably would have been
lost without it. When I took the professional development
workshop and was introduced to the ebook at the beginning, I
really was lost.” She mentions feeling that professional
development instructors were initially “talking above my head.”
However, she says that the ebook offered her scaffolds to better
understand the face-to-face professional learning: “I mean, I know
that sounds awful, but it was just like overwhelming. Then as I
went on throughout the summer and I took some other courses
and as I was exposed to ebook, I could understand things.”
Teacher A wanted more opportunities to write code from scratch.
“I still think it would have been more helpful if in sections they
would have prompted me to write my own code and me have to
figure it out, or if I get stuck, be able to contact someone and say,
‘I can’t get this code to work.’ That kind of thing instead of just
always answering the multiple-choice questions or doing the drop
and drag (Parsons problems).”

All three teachers mentioned that they plan to return to the eBook
in the future.

3.6.5 Feedback from CSP Pilot Teachers
For more detailed feedback, we paid a CSP pilot teacher in
Georgia to review the teacher ebook, which she did in the spring
of 2015. She found errors in the ebook, told us where she thought
we needed more exercises or better descriptions, and also
suggested adding answers for some of the more difficult practice
problems to reduce frustration for teachers who were new to
programming. These changes were done to version 2 in June
before our in-person teacher professional development at Georgia
Tech.

Another pilot CSP teacher in Georgia used version 2 of the
teacher ebook with her students and gave us feedback on which
chapters needed additional information. She said, “I loved the
data unit at the end.” She made specific recommendations on
additional material that should be added to particular chapters.
For example, she asked that the chapter on strings include a note
to highlight the fact that printing a variable prints the value of the
variable and printing a string prints the exact characters in the
string. She also recommended more content for some of the
introductory chapters based on how she was using the ebook with
her students in class.

3.6.6 Log File Analysis
We conducted an analysis of the log file from before logging was
accidently turned off in late June of 2015 to gather more evidence
about how the teachers actually used the interactive features.

Figure 3 below shows how many of the teachers, who completed a
particular section of chapter three (on the use of variables with
numeric values), did each of the interactive activities in the
section. The largest number of teachers (66) used the first code
lens (black) and a large number also ran the first code (blue) using
the active code feature. However, use of these features mostly
decreased from the beginning to the end of this section. A large
percentage (77%) of the teachers watched the videos (purple),
attempted Parsons problems (73%) (green), and answered
multiple-choice questions (74%) (gold). The number of teachers
who used these last three features remained fairly steady over the
course of this section. However, only 7 (11%) to 11 (16%) of the
teachers listened to the audio tours (red), even though this chapter
explicitly directed the reader to listen to one of the audio tours.

Table 2: Color to Activity Legend for Figure 3

Black Code lens
Blue Active Code Run
Gray Active Code Edit
Red Audio Tour
Gold Multiple Choice Question
Green Parsons Problem
Purple Video

Figure 3. Num. who did Each Activity in Part of Chapter 3

0

20

40

60

80

196

The number of unique teachers who did each of the activities in
chapter 10 (Repeating Steps with Turtles) appears in Figure 4.
The analysis shows that most of teachers ran the active code
(blue), solved Parsons problems (green), and answered multiple-
choice questions (gold). As seen before, very few teachers edited
the code, except for the fifth active code in the chapter, which
would not run until the user edited the code. In this chapter only
1-2 (6% to 11%) of the teachers listened to the audio tours.

One of our questions was, “How much do teachers actually
engage with code in the ebook?” Consistent with teacher self-
report (Figure 2), log file data shows that most teachers ran the
code. Surprisingly, few teachers actually edited the code, even
when they were directed to by the ebook. One of the teachers that
we interviewed said that she answered the questions and if she got
those correct, she didn’t feel the need to actually edit the code.
Some teachers reported the code lens visualizer as being very
valuable in their feedback. However, one of the interviewed
teachers said she didn’t bother using the code lens since she
already understood the code.

Figure 4. Unique Users who did Each Activity in Chapter 10
Some teachers listened to the audio tours as a supplement to
reading the program code and did report finding them valuable in
their feedback surveys. However, the log files show that the audio
tours are not used as much as running the code and doing the
practice activities. However, audio tours may particularly help
new computer science teachers by modeling how to talk about
code.

Figure 5. Teacher A’s progression through the ebook
We reviewed how one of the teachers who we interviewed
progressed through the ebook for additional insight into her
behavior. Figure 5 shows numbered days of the study on the
vertical axis, and the sequence of activities in the book (by
chapter) horizontally, with a mark for each activity attempted. The
teacher started with a few interactions in chapter 1, then about 20
days later did a few more actions in chapter 1 and then about
another 20 days later she began to work through the ebook more
consistently. She then had some long sessions working through
many chapters in the same session. As she said in her interview,
she was told to work through a certain number of chapters before

her in-person professional development, which may be why she
suddenly seemed to focus on completing many chapters quickly.

3.7 Version 3: TeacherCSP Ebook
We ended the teacher study in September of 2016. Based on the
feedback from the teachers we added the following.

• End of chapter summaries of the Python functions

• Additional material to the chapters of the ebook that
teachers had pointed out as needing more examples and
better explanations. For example we added a side-by-
side comparison of a while and for loop, and additional
examples using while loops.

• We added 10 end-of chapter exercises, even though that
broke our Examples+Practice format. We added at least
one exercise per chapter that required the
teacher/student to write all of the code from scratch.
Each of the exercises included the answer in a separate
tab. An additional tab was added with a link to a
discussion forum so that teachers could discuss the
question.

Also in response to teacher requests, we released a companion
student ebook in the fall of 2015 that has the same content, but
removes the answers and pedagogical content knowledge notes.
We are pleased to note that several of the teachers from the
teacher study used the ebook with their high school students
during the 2015-2016 academic year. They have also told us that
they intend to use it again next year.

We haven’t analyzed the data from version 3 of the teacher ebook
yet. However, we are pleased that some of the teachers from the
version 2 teacher study have continued working with the version 3
teacher ebook.

4. DESIGN PRINCIPLES
The design principles listed here are the ones that we have the
most confidence in based on our multiple iterations, teacher
observations, teacher feedback, teacher interviews, log file data
analyses, and laboratory experiments. Evidence from the ebook
iterations and experiments supports our belief that building upon
educational psychology design principles is the right first step in
developing our ebooks. However, we still don’t completely
understand what makes learning in computer science challenging.
We cannot assume that the educational psychology principles will
work as predicted. We have to test, and sometimes modify our
approach, because of the unique challenges of learning
computing.

4.1 Use Worked Examples + Practice
The teacher feedback provides evidence that the teachers
appreciated the interactive nature of the ebook with worked
examples in the form of active code or code lens paired with
multiple-choice, fill in the blank or Parsons problems. The log
file analysis shows that the majority of the teachers ran the
examples and did the practice problems.

4.1.1 Use Subgoal Labels
As we started this project, a collaboration with Psychology
professor Richard Catrambone and Ph.D. student Lauren
Margulieux led to studies supporting the belief that subgoal
labeling of worked examples facilitated student learning,
retention, and transfer [24]. A follow-up experiment showed that
the effect was twice as strong for teachers as for participants
drawn from the undergraduate psychology pool [23]. Morrison

0

10

20

197

continued the experiments and showed that the subgoal labeling
effects extended to C-like textual languages [27].

It can be challenging to invent good subgoal labels, as has been
noted in the literature on worked examples [2]. We do not use
subgoal labeling on all examples. We do not use the same subgoal
labels on all program examples. When we do use them, we use
them consistently across a chapter.

Morrison and Margulieux investigated different ways of using
subgoal labels (e.g., giving students the labels compared with
asking students to fill in the blank to construct subgoal labels) on
program examples. Their results were contrary to the results
predicted by previous literature [40]. They hypothesize that the
implicit cognitive load of program understanding was so high that
it swamped different uses of subgoal labeling (which might also
explain the modality results). When they used a more sensitive
learning measure in their subgoal labeling experiment (based on
Parsons problems), they got results that matched the educational
psychology predictions [34].

4.1.2 Use Low-Cognitive Load Practice Problems
Evidence from the teachers’ feedback and the log file analyses
show that teachers are using the low-cognitive load practice
problems. Parsons problems, in particular, were mentioned as
being valuable 10 times in the feedback, compared to five times
for multiple choice or fill in the blank questions. Log file analysis
also shows that Parsons problems were used as much as the
multiple-choice questions and running code and far more than
editing code. The most recent set of experiments also support the
belief that Parsons problems have lower cognitive load than the
same practice problem as a code-writing activity, and that subgoal
labels also improve performance on Parsons problems [26].

4.1.3 Maybe Provide Audio Tours
Morrison attempted to measure the benefits of audio tours in an
experiment where she compared textual, auditory, and combined
text plus narration explanations of program code. However, she
found no difference between the three conditions. Another
experiment in the research literature also failed to find a
difference between modality conditions on explanations of
program code [34]. However, feedback from the teachers
provides evidence that at least some teachers found the audio
tours valuable. Yet, the log file analysis showed that only a small
percentage of teachers actually listened to the audio tours. Audio
tours are probably most beneficial for the teachers who have not
taught programming before.

4.2 Provide lots of content
The teacher feedback included many requests for more content.
They want more examples, more exercises, and more coverage of
the CS principles course. They want answers to all the practice
problems and exercises. In addition, teachers also asked for
external resources such as lesson plans, quizzes, pacing guides,
and project ideas.

4.3 Provide what teachers expect
Part of the answer to what teachers need is not about cognition,
but about teacher expectations.

• Teachers wanted end-of-chapter exercises, even if our
theoretical framework recommends pairing
Examples+Practice. We recommend providing end of
chapter summaries of both the computing concepts and
Python procedures and functions covered in the chapter.
Teachers explicitly asked for this and several teachers
mentioned the concept summaries as being useful.

• Part of what we are testing with our ebook is how much
programming teachers can learn and how much we can
improve their confidence in their ability to teach
programming without requiring them to do significant
amounts of programming. However, teachers studying
computer science expect to program, and some expect to
code from scratch.

We ignore these requests at the risk of losing participation.

4.4 Support teachers understanding code
Reading and understanding programs is a challenging task,
especially for novices. It’s also an important task since it’s one of
the most common activities of expert CS teachers [30]. The
teacher feedback shows that teachers found the code lens and
audio tours useful for improving their understanding of code.
Evidence from controlled experiments also shows that subgoal
labels improve learners understanding of code.

4.5 Save teachers time
Teachers don’t have a great deal of time for professional
development. They often work in relatively small chunks of time.
Add features to save teachers time.

• Provide a way to mark a section as completed and a way
to return a teacher to where he or she was last.

• Break the material into chapters and sections. Make each
section short enough to allow a teacher to complete it in
15-20 minutes, which makes it easier to fit into the day
and to schedule.

• Provide answers for all the practice problems to help
reduce teacher frustration and to scaffold teachers with no
prior programming experience.

5. LIMITATIONS
Since logging was accidently turned off from late June till fall
2015, we don’t have all the data from the teachers’ use of version
2 of the ebook. In particular we don’t have the end of chapter tests
for many of the teachers who worked through the ebook, so we
can’t comment on how much the teachers learned from using the
ebook. In addition, we are basing some of our recommendations
on teacher feedback, however we only received feedback from
thirty-eight teachers.

6. CONCLUSIONS
The teacher feedback and interviews serve as an existence proof
that an Examples+Practice ebook approach (versus a MOOC-
based, or in-class coding-centric approach) can achieve our goal
of greater teacher self-confidence. We do not yet know how to
design so that all or most teachers come away with increased self-
confidence.

The contribution of this paper is a set of design principles that
others can use when developing interactive ebooks for computer
science teachers. We have presented evidence to support using a
worked examples plus practice approach. The ebook provided
worked examples using the active code and code lens features,
and practice problems using multiple-choice, Parsons problems,
and fill-in-the-blank questions.

7. ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation under Grant No. 1432300. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

198

8. REFERENCES
[1] Astrachan, O., Briggs, A., Diaz, L., and Osborne, R.B., 2013.

CS principles: development and evolution of a course and a
community. In Proceedings of the Proceeding of the 44th
ACM technical symposium on Computer science education
(Denver, Colorado, USA2013), ACM, 2445382, 635-636.

[2] Atkinson, R.K., Derry, S.J., Renkl, A., and Wortham, D.,
2000. Learning from Examples: Instructional Principles from
the Worked Examples Research. Review of Educational
Research 70, 2, 181–214.

[3] Barab, S. and Squire, K., 2004. Design-Based Research:
Putting a Stake in the Ground. The JOURNAL OF THE
LEARNING SCIENCES 13, 1, 1-14.

[4] Bell, T., Andreae, P., and Lambert, L., 2010. Computer
Science in New Zealand high schools. In Proceedings of the
Proceedings of the Twelfth Australasian Conference on
Computing Education - Volume 103 (Brisbane,
Australia2010), Australian Computer Society, Inc., 1862223,
15-22.

[5] Bell, T., Andreae, P., and Robins, A., 2014. A Case Study of
the Introduction of Computer Science in NZ Schools. Trans.
Comput. Educ. 14, 2, 1-31.

[6] Benda, K., Bruckman, A., and Guzdial, M., 2012. When Life
and Learning Do Not Fit: Challenges of Workload and
Communication in Introductory Computer Science Online.
Trans. Comput. Educ. 12, 4, 1-38.

[7] Brown, A.L., 1992. Design experiments: Theoretical and
methodological challenges in creating complex interventions
in classroom settings. Journal of the Learning Sciences 2, 2,
141-178.

[8] Brown, N.C.C., Kolling, M., Crick, T., Jones, S.P.,
Humphreys, S., and Sentance, S., 2013. Bringing computer
science back into schools: lessons from the UK. In
Proceedings of the Proceeding of the 44th ACM technical
symposium on Computer science education (Denver,
Colorado, USA2013), ACM, 2445277, 269-274.

[9] Brown, N.C.C., Sentance, S., Crick, T., and Humphreys, S.,
2014. Restart: The Resurgence of Computer Science in UK
Schools. Trans. Comput. Educ. 14, 2, 1-22.

[10] Caspersen, M.E. and Nowack, P., 2013. Computational
thinking and practice: a generic approach to computing in
Danish high schools. In Proceedings of the Proceedings of
the Fifteenth Australasian Computing Education Conference
- Volume 136 (Adelaide, Australia2013), Australian
Computer Society, Inc., 2667214, 137-143.

[11] Darling-Hammond, L., Wei, R.C., Andree, A., Richardson,
N., and Orphanos, S., 2009. Professional learning in the
learning profession. Washington, DC: National Staff
Development Council.

[12] Denny, P., Luxton-Reilly, A., and Simon, B., 2008.
Evaluating a New Exam Question: Parsons Problems. In
Proceedings of the International Computing Education
Research Conference (Sydney, Australia2008), ACM.

[13] Ericson, B. and Guzdial, M., 2014. Measuring demographics
and performance in computer science education at a
nationwide scale using AP CS data. In Proceedings of the
Proceedings of the 45th ACM technical symposium on
Computer science education (Atlanta, Georgia, USA2014),
ACM, 2538918, 217-222.

[14] Ericson, B., Moore, S., Morrison, B., and Guzdial, M., 2015.
Usability and Usage of Interactive Features in an Online
Ebook for CS Teachers. In Proceedings of the Proceedings
of the Workshop in Primary and Secondary Computing

Education (London, United Kingdom2015), ACM, 2818335,
111-120. DOI= http://dx.doi.org/10.1145/2818314.2818335.

[15] Ericson, B.J., Guzdial, M., and Mcklin, T., 2014. Preparing
secondary computer science teachers through an iterative
development process. In Proceedings of the Proceedings of
the 9th Workshop in Primary and Secondary Computing
Education (Berlin, Germany2014), ACM, 2670781, 116-119.
DOI= http://dx.doi.org/10.1145/2670757.2670781.

[16] Ericson, B.J., Guzdial, M.J., and Morrison, B.B., 2015.
Analysis of Interactive Features Designed to Enhance
Learning in an Ebook. In Proceedings of the ICER (Omaha,
NE, USA, August 09-3, 2015 2015), ACM. DOI=
http://dx.doi.org/http://dx.doi.org/10.1145/2787622.2787731.

[17] Freeman, S., Eddy, S.L., Mcdonough, M., Smith, M.K.,
Okoroafor, N., Jordt, H., and Wenderoth, M.P., 2014. Active
learning increases student performance in science,
engineering, and mathematics. Proceedings of the National
Academies of Science 111, 23, 8410-8415

[18] Guo, P.J., 2013. Online python tutor: embeddable web-based
program visualization for cs education. In Proceeding of the
44th ACM technical symposium on Computer science
education ACM, 579-584.

[19] Guzdial, M., 2015. Learner-Centered Design of Computing
Education: Research on Computing for Everyone. Synthesis
Lectures on Human-Centered Informatics 8, 6, 1-165.

[20] Helminen, J., Ihantola, P., Karavirta, V., and Malmi, L.,
2012. How Do Students Solve Parsons Programming
Problems? - An Analysis of Ineraction Traces. In
Proceedings of the International Computing Education
Research Conference (Aukland, New Zealand2012), ACM,
119-126.

[21] Hubwieser, P., Magenheim, J., M, A., #252, Hling, and Ruf,
A., 2013. Towards a conceptualization of pedagogical
content knowledge for computer science. In Proceedings of
the Proceedings of the ninth annual international ACM
conference on International computing education research
(San Diego, San California, USA2013), ACM, 2493395, 1-8.

[22] Jadud, M.C., 2006. An exploration of novice compilation
behaviour in BlueJ. University of Kent.

[23] Margulieux, L.E., Catrambone, R., and Guzdial, M., 2013.
Subgoal labeled worked examples improve K-12 teacher
performance in computer programming training. In
Proceedings of the 35th Annual Conference of the Cognitive
Science Society, 978-983.

[24] Margulieux, L.E., Guzdial, M., and Catrambone, R., 2012.
Subgoal-labeled instructional material improves performance
and transfer in learning to develop mobile applications. In
Proceedings of the ninth annual international conference on
International computing education research ACM, 71-78.

[25] Mayer, R.E. and Moreno, R., 1998. A split-attention effect in
multimedia learning: Evidence for dual processing systems
in working memory. Journal of Educational Psychology 90,
2, 312.

[26] Morrison, B.B., Margulieux, L.E., Ericson, B., and Guzdial,
M., 2016. Subgoals Help Students Solve Parsons Problems.
In Proceedings of the Proceedings of the 43rd ACM
technical symposium on Computer Science Education
(Memphis, Tennessee2016).

[27] Morrison, B.B., Margulieux, L.E., and Guzdial, M., 2015.
Subgoals, context, and worked examples in learning
computing problem solving. In Proceedings of the eleventh
annual International Conference on International Computing
Education Research ACM, 21-29.

199

[28] Morrison, B.B., Ni, L., and Guzdial, M., 2012. Adapting the
disciplinary commons model for high school teachers:
improving recruitment, creating community. In Proceedings
of the ninth annual international conference on International
computing education research (Auckland, New
Zealand2012), ACM, 2361287, 47-54. DOI=
http://dx.doi.org/10.1145/2361276.2361287.

[29] Mousavi, S.Y., Low, R., and Sweller, J., 1995. Reducing
cognitive load by mixing auditory and visual presentation
modes. Journal of Educational Psychology 87, 2, 319.

[30] Ni, L., 2011. Building professional identity as computer
science teachers: supporting secondary computer science
teachers through reflection and community building. In
Proceedings of the seventh international workshop on
Computing education research %@ 978-1-4503-0829-8
ACM, Providence, Rhode Island, USA, 143-144. DOI=
http://dx.doi.org/10.1145/2016911.2016942.

[31] Parsons, D. and Haden, P., 2006. Parson's programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education (Hobart,
Australia2006), Australian Computer Society, Inc., 1151890,
157-163.

[32] Sadler, P.M., Sonnert, G., Coyle, H.P., Cook-Smith, N., and
Miller, J.L., 2013. The influence of teachers'� knowledge
on student learning in middle school physical science
classrooms. American Educational Research Journal 50, 5,
1020-1049.

[33] Smith, M., Computer Science for All. ,
https://www.whitehouse.gov/blog/2016/01/30/computer-
science-all, Accessed 2016, July 13

[34] Solomon, H.M., 2005. The effect of audio narration in
computer-mediated instruction on procedural fluency by
students of varying reading levels. Florida State University.

[35] Sorva, J., 2012. Visual program simulation in introductory
programming education. Aalto University.

[36] Spradling, C., Linville, D., Rogers, M.P., and Clark, J., 2015.
Are MOOCs an appropriate pedagogy for training K-12
teachers computer science concepts? J. Comput. Sci. Coll.
%@ 1937-4771 30, 5, 115-125.

[37] Sweller, J., 1988. Cognitive load during problem solving:
Effects on learning. Cognitive Science 12, 2, 257-285.

[38] Sweller, J. and Cooper, G., 1985. The Use of Worked
Examples as a Substitute for Problem Solving in Learning
Algebra. Cognition and Instruction 2, 1, 59-89.

[39] Taylor, K. and Miller, C.C., De Blasio to Announce 10-Year
Deadline to Offer Computer Science to All Students,
http://www.nytimes.com/2015/09/16/nyregion/de-blasio-to-
announce-10-year-deadline-to-offer-computer-science-to-all-
students.html, Accessed 2016, July 13

[40] Trafton, J.G. and Reiser, B.J., 1993. The contributions of
studying examples and solving problems to skill acquisition.
In Proceedings of the Proceedings of the 15th Annual
Conference of the Cognitive Science Society (Hillsdale,
NJ1993), Lawrence Erlbaum Associates, Inc., 1017–1022.

200

